长龙国际股份有限公司

与新马地区、上海地区合作 启动先进的HBM半导体 COWOS的3D封装项目

https://clisemi.com/

公司简介

长龙国际设立于 2017 年 1 月,我们的团队专注于先进 封装厂的整厂输出及绿能技术开发,从技术开发到生产 实施。拥有的技术发明基础上,汇聚了一群半导体及绿 能领域的专家,确保项目技术先进性和生产高效。

公司沿革

2017年

公司成立

2017 年至2020 年 HBM/3D封装及专利布局。

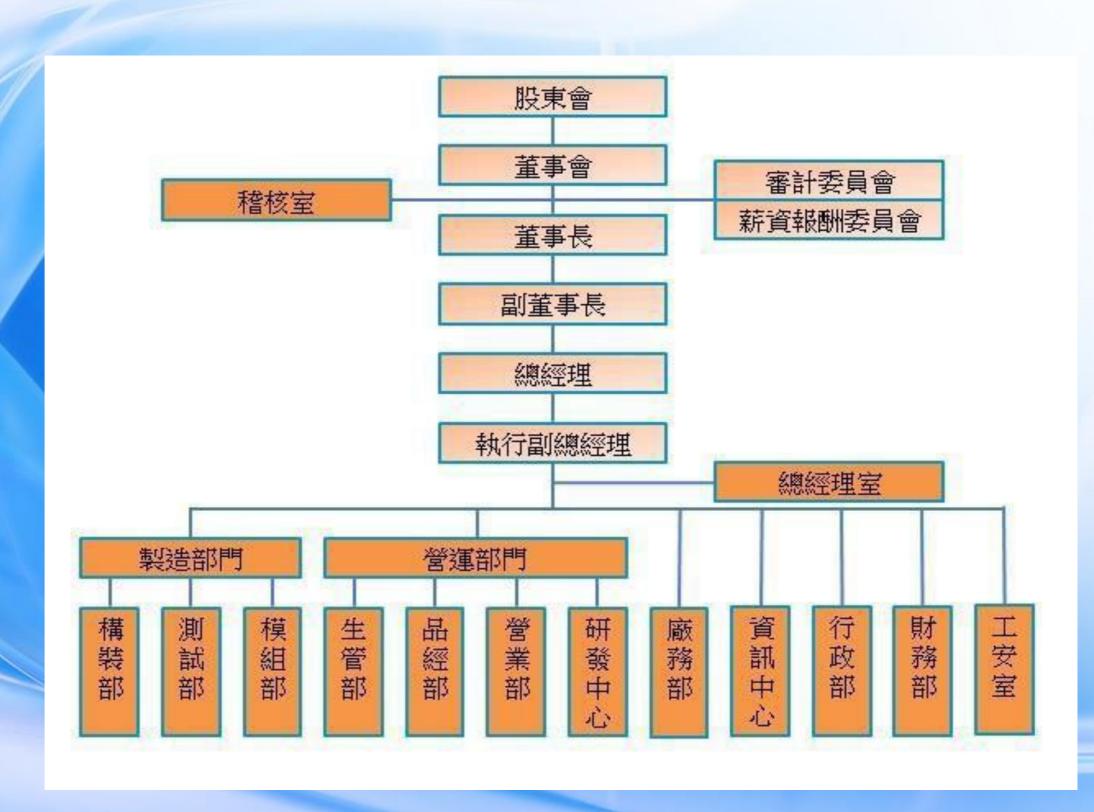
和韓國Pro Test销售额 5000 万美元/每年约150人。

及 ITEST(艾特半导体) 销售额1.2亿美元/每年约 850人。

2021年

研发增程摩托车。

2022年


研发电动脚踏车。

2023年至2024年 研发无人机增程动力系统。

2025年

研发机器人动力增程背包专利。

公司组织结构

团队成员

团队	成员	学经历	其它
运营团队	5~7人		经由董事会聘任
生产技术专家团队	50~70人		台湾/韩国现职工程师
品质管理专家团队	15~25人		台湾/韩国现职工程师
市场分析专家	7~9人		台湾现职工程师

台湾技术团队成员及其经历介绍

职称	姓名	个人经历
技术总监	沈明东	超过30年半导体组件封装、电子电路设计、电池材料
		研发经验
资深顾问	杨博士	清华大学材料科技博士学位
		剑桥大学锂电池博士学位
营运执行长	林福男	大同工学院学士
		大同股份有限公司
		开发、设计、生产、管理经验 35 年以上
资深工程师	王先生	首席技术总监
		开发设计经验 15 年以上
		半导体封测研发经验 10 年以上

韩国 技术团队:由多名研发工程师组成,具有丰富的

HBM技术研发和应用经验

HBM Project(Packaging& Test)

1) Basic personal composition(Packaging)

NAME	CAREER	WORK EXPERENCE	REMARK
JJKIM	about 30 Years	SK Hynix& AT semicon	Gensral Affairs
LEE	about 15 Years	SK Hynix Substrate Process	eng'rs
Park	about 5 Years	SK Hynix Substrate Process	eng'rs
KIM	about 10 Years	SK Hynix Bumping	Preocess eng'rs
СНА	about 6 Years	SK Hynix/Domestic Fabless Bump	ing Process eng'rs
LEE	about 10 Years	SK Hynix Interpose Process	eng'rs
KIM	about 10 Years	SK Hynix & OSAT HBM Process	eng'rs
КІМ	about 10 Years	SK Hynix & OSAT HBM Process	eng'rs
Others(4people)	about 5 Years	Domestic OSAT Assistant	

Page 1/2

HBM Project(Packaging& Test)

2) Basic personal composition(Test)

NAME	CAREER	WORK EXPERENCE	REMARK
JJKIM	about 30 Years	SK Hynix& AT semicon	Gensral Affairs (Duplicated
LEE	about 15 Years	SK Hynix Dram Test	eng'rs
LEE	about 10 Years	SK Hynix	Nand Test eng'rs
JOUNG	about 10 Years	OSAT or Domestic Fabless Logic Test	eng'rs
КІМ	about 5 Years	Domestic Fabless or Design Comany	Logic Test eng'rs
Others(3 people)	about 5 Years	Domestic OSAT Assistant	

3) Detail plan

- Establish detailed strategies for each step(Prepare a Test base in conjunction with 3D Packaging development)
- The Test Engineer composition is centered on local personnel, and additional personnel are prepared for early SET UP, Yiled up, etc.
- Separate establishment of overall personal paln,etc.(Engineering/Maintenance/Production.etc)

核心团队:包括多名在半导体行业有多年经验的技术专家和市场营销专家,其中CTO在内存技术研发领域有超过20年的经验。

Pro Test和ITEST(AT semicon)前董事長履歷

Personal Career

個人情報

姓名:金 鎖宙(KIM JIN JOO),63歲

學歷

- 漢陽大學校 電氣工學科(工學士)
- 優陽大學校 大學院 電氣工學科(工學碩士)

主要 經力

1986~2002: LG半導體 Test技術 室長 2003~2019: AT semicon 代表理事 2019~2021: HYTC Advisor

2021~現在: KH TECH 代表理事

Detail Career

1986~2002 LG华導體

- Memory Test Program開發& Development Engineer
- Memory(Dram/Nand)/MCU/C MOS image semsor/ASIC Test Eng'rs Team Leader
- 72M Rambus DRAM 國內最初 Test Program開發

2003~現在 Pro Test/I TEST/AT semicon/KH TECH

2002. Pro Test設立/Test House事樂開始

2006. I TEST合件

- Dram&Flash Memory(SK Hynix),System LSI(Samsung),Fabless會社 Test實施

2007. Multi Chip Test & AP Chip Test 開始

2011. 韓國 KOSDAQ上場

2012. Mobile用 DRAM Test實施

2014. Semitech引受合併

- Package and Test House 事業擴大

2019~現在 半導體 Consultanting

韩国技术团队成员及其经历介绍

	职称	姓名	个人经历
	经理兼董事	GM KIM(Director)	研发部 (另带领约 10 干部成员)
	经理	HJ KIM	生技部 (另带领约 50 成员)
7	经理	CJ Sung	量测部 (另带领约 15 成员)
	经理	BHKIM	质量管理部 (另带领约 15 成员)
	经理	GH Shin	设备部 (另带领约 12 成员)

商业计划

1. 全面的日程

1)日程安排经过部门

item	Detail schedule	
Establish a specific plan	~2 Week	
Equipment ordering/receiving	→ About3~4Month	
Secure Key Man	About 2Month	
Human Resources and Training	About 3Month	
Overall production management	About 2Month	
1Line set up	About 2 Week	cs
Customer Qual	About 2~3 We	eeks
General preparation(computer.etc)	About 2~3 We	eeks
Others		

2) 考虑 这 总体日程安排如下 作为 这 工厂 完成 时间表和 设备 介绍,这是 可能的 到 缩短 这 日程。

- 它 有可能 到 缩短 这 日程 时期 当 详细的 计划 已建立 和 这 设备订购 单 已推广。

2. 投资 数量 和 必需的 区域

1)投资数量(1线路设置&附加计划)和需要区域

Div	ision	1 Line set up	Additional equipment	Total amount
lymactmant	Packaging	USD 7.7M\$	USD 34.6M\$	USD 42.3M\$
lvnestment amount	TEST	USD 6.4M\$	USD 7.7M\$	USD 14.0\$
amount	sum	USD 14.0M\$	USD 42.3M\$	<u>USD 56.3M\$</u>
Area required	PKG	Clean room 3,300m ²	Clean room 8,250m ²	Clean room 11,550m ²
	TEST	Clean room 1,650m ²	Clean room 1,650m ²	Clean room 3,300m ²
	etc(Office)	660m²		660m²
	etc(education)	990m²		990m²
	Total required			Total 16,500m ²

Note *) Class division is 50% prepared for class 1000 and 10,000

2) 这全部的投资是美元 5630万美元和 这所需面积为16,500 m²

3. 销售量和操作利润

1) 销售量和操作利润(基于在年)

Div	ision /	1 Line set up	Additional equipment	Total amount
	Packaging	USD 16.9M\$	USD 83.1M\$	USD 100.0M\$
Sales	TEST	USD 2.3M\$	USD 2.6M\$	USD 5.0\$
	sum	USD 19.2M\$	USD 89.2M\$	<u>USD 105.0M\$</u>
Operat	ing profit	8.30%	24.30%	21.30%

Note *1) Sales will be made after normal set up is completed.

- *2) Equipment deprecication is calculated on a 5-year straight-line basis.
- *3) The material cost of packaging is assumed to be 60%.

2) 和额外的投资,这速度返回预计到是大约20%到期的到规模经济。

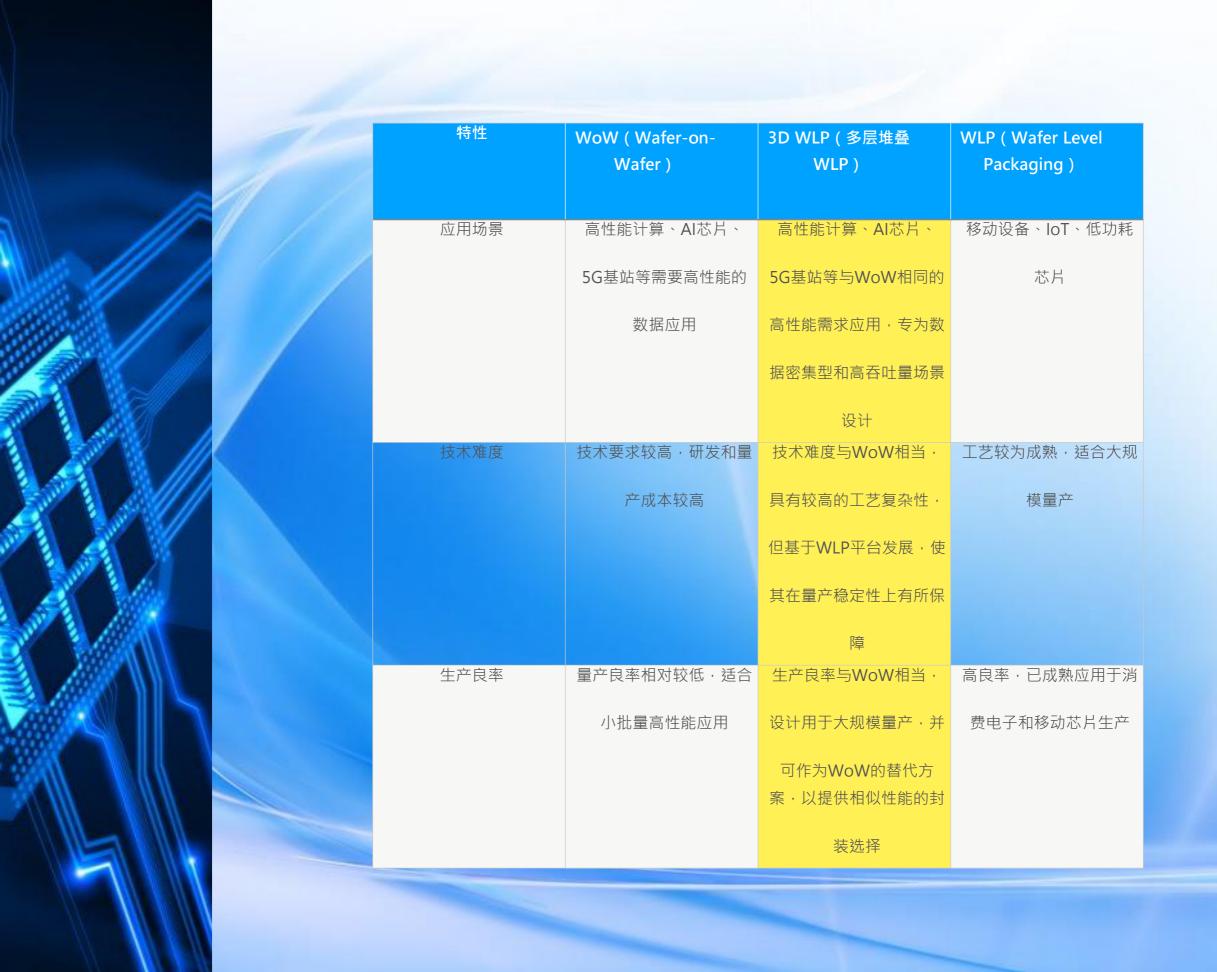
技术优势分析

长龙的3D PoP和3D WLP技术具有显着的替代潜力:

• 3D PoP凭借其多层堆叠和高密度互连结构,适合作为SolC的替代方案, 尤其在高性能计算和 5G基站等高带宽需求的应用中。

• 3D WLP则以较高的良率和较简化的散热设计,能够替代WoW,特别适合对芯片面积利用率和密度要求较高的场景。

表:台积电先进封装工艺与公司技术对比

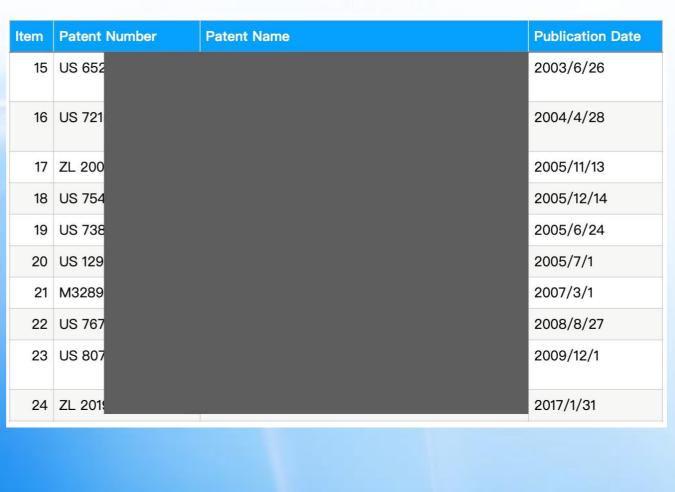

衣,口似 出 儿处封衣工乙一刀以小刈山					
封装技术	技术全称	特点与优势	适用场景	可对比技术	
CoWoS	Chip-on-Wafer-	提供高带宽互连和	高性能计算、AI应		
	on-Substrate	高效热管理·适合 高性能计算;常用 于2.5D封装	用(如GPU、高性 能处理器)		
InFO	Integrated Fan-	无基板扇出型封	移动处理器、IoT设		
	Out	装,适合移动和IoT 设备,封装薄、信 号传输性能优越, 提升晶圆利用率	备		
SoIC	System on	3D堆叠封装技术,	高性能计算、5G基	长龙 3D PoP	
	Integrated Chips	支持多芯片垂直堆 叠,带来更高系统 集成度和更低功 耗,减少延迟	站	(有FAB条件限制)	
WoW	Wafer-on-Wafer	晶圆直接堆叠技 术,提高芯片面 积利用率,增强 密度集成,适合 高密度需求	高密度集成应用	长龙 3D WLP	
TSMC-3DFabric™	TSMC-SoIC and	集成多个封装技术	人工智能、5G、云		
Platform	TSMC-3DFabric™	•	计算、高性能计算		
	Platform	和InFO),提供	应用		
		2D、2.5D和3D封 装的定制化选择, 提高整体系统性能			

3D WLP 多层堆叠封装

3D WLP 多层堆叠封装在结构上融合了 WLP 和 WoW 的优势,具有较高的带宽密度和较短的互连 路径,同时在性能与功耗之间取得平衡。其散热需求与 WoW 相当,适用于高性能计算、AI 芯片和 5G 基站等场景,并提供了比单层 WLP 更高的集成度。3D WLP 的工艺复杂性和技术难度与 WoW 相当,生产良率也接近 WoW,使其在高性能需求应用中成为 WoW 的替代方案,有助于满足数据 密集型和大规模量产需求。

表:长龙 3D WLP 与 WLP 和 WoW 封装技术特性对比

特性	WoW (Wafer-on-	3D WLP (多层堆叠	WLP (Wafer Level
	Wafer)	WLP)	Packaging)
封装方式	晶圆堆叠封装,将两个或	多层堆叠封装,通过在	晶圆级封装・在晶圆制造
	多个完整的晶圆直接垂直	WLP基础上进行多层垂直	阶段直接封装芯片
	堆叠	堆叠,兼具WLP的封装薄	
		型化特点与WoW的3D堆	
		叠特性	
封装结构	3D堆叠封装;通过垂直	3D堆叠封装,多层结构	2D封装;单层封装在单
	堆叠晶圆实现高密度集成	使芯片面积利用率提高;	一平面上
		可通过垂直互连方式实现	
		多层电路的高效连接	
集成度	高集成度;支持复杂系统	中高集成度;相比传统	集成度较低;适合较小封
	级封装和高密度集成	WLP更高密度,但通常不	装尺寸需求
		及完全的3D堆叠封装如	
		WoW的集成度	
性能特点	提供高带宽低延迟互连,	通过垂直堆叠带来较高的	较低的互连密度和带宽,
	适合高性能和大数据吞吐	带宽密度和更短的互连路	适用于低功耗和中等性能
	需求	径;在性能和功耗之间提	需求
		供平衡,适合性能和功耗	
		要求适中的应用	
散热能力	较高散热需求,适合高性	相较于单层WLP具有更高	散热能力较低,由于封装
	能应用,通常需要更复杂	的散热需求,但由于封装	较薄适合低至中功耗设备
	的散热设计	较薄通常比WoW的散热	
		设计更为简化,可通过外	
		部散热方案进行优化	



专利布局

长龙的专利布局涵盖了半导体封装、低轮廓结构、散热装置及多层互连结构等核心领域,体现了其 在 高密度集成、散热管理和低轮廓封装等关键技术上的优势。例如,涵盖了多层集成和电气连接优 化方 法,为高性能需求提供了稳健的基础;而散热相关专利则确保了高集成度芯片的热管理效率。 整体布局支持长龙在先进封装领域的竞争力,并有助于进一步优化其产品性能和市场覆盖。

表:与先进封装有关专利(标记为主专利)

Item	Patent Number	Patent Name	Publication Date
1	US 677	onductor chip module	1999/9/28
2	US 642	d for mounting a semiconductor chip on a ate and semiconductor device adapted for ing on a substrate	2000/10/16
3	US 670		2000/7/18
4	US 662		2000/8/4
5	US 643	onductor device adapted for mounting on a ate	2001/1/18
6	US 657		2001/11/13
7	US 658		2001/11/13
8	US 673		2001/3/16
9	US 660	d for mounting a semiconductor chip on a ate and semiconductor device adapted for ing on a substrate	2002/4/11
10	US 661	d for mounting a semiconductor chip on a ate and semiconductor device adapted for ing on a substrate	2002/4/17
11	US 667		2003/1/8
12	US 7710		2003/11/19
13	US 768		2003/11/19
14	US 124		2003/5/12

长龙在2002年形成了针对 substrate 的关键专利布局,锁定了多个涉及芯片在基板上的安装方法与 封装结构的专利,这些早期的创新限制了其他大厂的技术路线。专利相继发布,进一步巩固了长龙 在基板相关技术的市场优势。这些专利的布局确保了在多芯片模块的封装和安装方法上,长龙在行业中保持先发地位,对其他大厂在相关领域的技术开发造成了显着限制。

主要专利对3D WLP和3D PoP的发展优势

作为3D WLP和3D PoP发展的关键技术布局,长龙的专利组合增强了其在多层封装中的优势:

- 提升了电气连接和安装精度,优化了多层封装的连接可靠性;
- 微细互连技术则在多芯片模块中提升了结构灵活性和稳定性;
- 通过简化工艺和优化电气连接,提高了3D精密封装的效率;
- 多层互连结构则专注于高密度需求,尤其适合3D WLP的应用。这些布局奠定了长龙在3D封装领域的稳固地位。

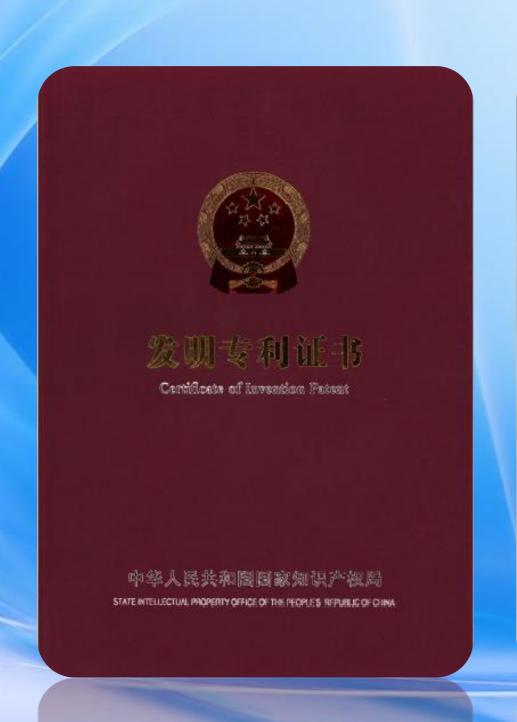
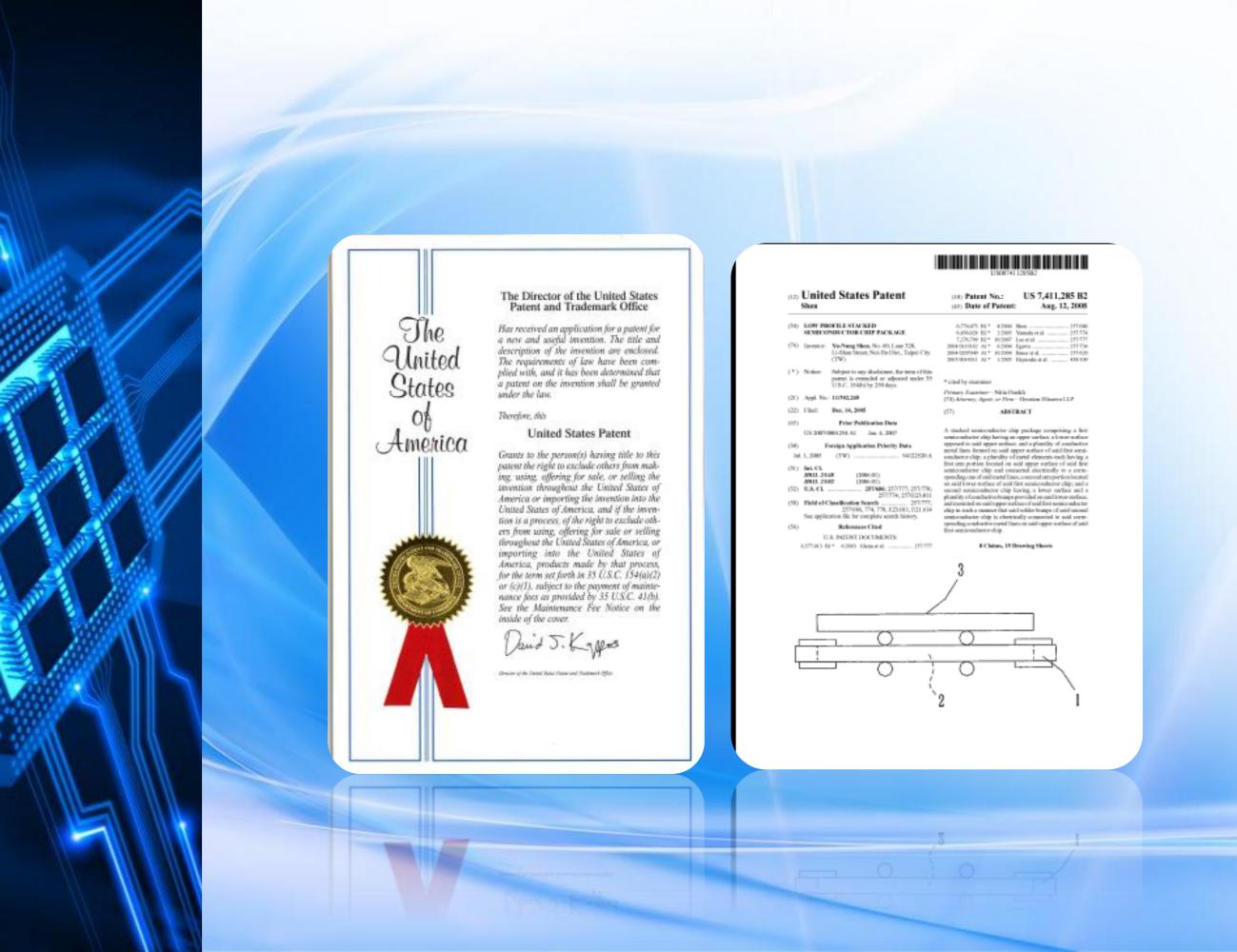

表:长龙主要专利内容描述及产业效果

表:长 <i>ル</i> 主要专利内谷抽処及产业效果				
Item	专利名称	概要描述	产业效果	
2	Method f semiconc a substra	描述了在芯片焊盘表面形成绝缘层和导电体,通过隔离层中的接触腔和通孔连接芯片和基板焊点。此技术优化了芯片电气连接,提升了安装精度和可靠性,适合复杂电路封装。	为复杂电路封装提供早期电气 连接解决方案,推动高精度、 高可靠性封装的普及。	
5	Semicono adapted t on a subs	提供一种通过微细互连技术将芯片焊盘与基板焊点连接的装置,增强了电气连接和结构可靠性,特别适用于多芯片模块封装,提高了封装的稳定性,并在早期阶段限制了竞争对手技术路线。	提升多芯片模块封装的稳定性,成为产业标准,降低竞争者在电气互连方面的技术发展空间。	
9	Method f semicond a substra	介绍了在芯片焊盘上形成导电凸块并涂 覆光刻胶层的技术,通过在光刻胶层中 形成通孔并填充金属材料实现稳定连 接,提升了装配精度和电气性能,简化 了传统封装流程。	优化装配精度并简化流程,为 高密度和小尺寸芯片封装提供 高效生产路径。	
10	Method fi semicond a substra	使用多层导电结构提升芯片与基板的电气连接,在焊盘表面涂覆光刻胶层形成导电凸块,并通过通孔和多层互连结构增强电气连接,适用于高密度多芯片封装,优化了装配过程和性能。	支持高密度封装发展,促进多 层互连技术的成熟和产业推 广,适用于高性能芯片模块。	

3D封装专利清单


/_						
	項目	專利號	案弓名稱			
	1	US7383630	Method for making a circuit plate			
	2	US6774473	Semiconductor chip module			
	3	US6420788	Method for mounting a semiconductor chip on a substrate and semiconductor device adapted for mounting on a substrate			
	4	US6437448	Semiconductor device adapted for mounting on a substrate			
	5	US7176573	Semiconductor device with a multi-level interconnect structure and method for making the same			
	6	I241009	一種形成玄砲凸塊的方法及具布如此形成之電凸塊的裝置			
	7	I292178	堆疊式半導體晶片封裝體			
	8	US7411285	Low profile stacked semiconductor chip package			
	9	ZL200510117763.5	堆疊式半導體晶片封裝體			
	10	US8076775	Semiconductor package and method for making the same			
	11	US7672130	Heat dissipating device			
	12	ZL201110036515.3	散熱裝置			

长龙国际与新马地区、大陆合肥地区 合作3D封装相关项目

(12) United States Patent Shen

(10) Patent No.: US 8,076,775 B2 (45) Date of Patent: Dec. 13, 2011

(54) SEMICONDUCTOR PACKAGE AND METHOD FOR MAKING THE SAME

(76) Inventor: Yu-Nung Shen, Taipei (TW)

(*) Notice: Subject to any disclaimer, the term of this potent is extended or adjusted under 35 U.S.C. 154(b) by 73 days.

(21) Appl. No.: 12/357,334 (22) Filed: Jan. 21, 2009

(65) Prior Publication Data

US 2009/0194863 A1 Aug. 6, 2009

Foreign Application Priority Data (30)

Feb. 1, 2008 (TW) 97104403 A

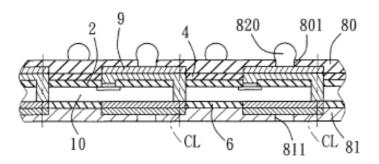
(51) Int. Cl. H0H. 23/94 (2006.01) (52) U.S. Cl. . 257/730; 257/826; 257/774; 257/E23.023; 257/E23.069; 257/E23.125; 438/106; 438/127; 361/777

See application file for complete search history.

(56)References Cited

> U.S. PATENT DOCUMENTS

* cited by examiner


Primary Evantuer — William D Coleman

Assistant Económer — Su Kim (74) Attorney, Agent, or Firm — Christie, Parker & Hale,

(57)ABSTRACT

A semiconductor pockage includes: a semiconductor sub-strate; an inner insulator keyer formed on the substrate; at least one internal wiring extending from a front side of the sub-strate along one of lateral sides of the substrate to a rear side of the substrate; a first outer insulator layer disposed at the front side of the substrate, formed on the internal wiring, and formed with at least one wire-connecting hole; and a second outer insulator layer disposed at the near side of the substrate, formed on the internal wiring, and formed with at least one wire-connecting hole which exposes a portion of the internal

7 Claims, 8 Drawing Sheets

(12) United States Patent

Shen

(10) Patent No.: US 6,774,473 B1

(45) Date of Patent: Aug. 10, 2004

(54)	SEMILO	NIPOCTOR CHIP	MODULE	
(75)	Inventor	Mine-Tune Shop	dE No. 52 Sec.	

Ming-Tung Shen, 4F, No. 52, Sec. 2, Chung-Shan N. Rd., Taipei (TW)

(73) Assignee: Ming-Tung Shen, Taipei (TW)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 69/467,264

(22) Filed: Sep. 28, 1999

(30) Foreign Application Priority Data (51) Int. CL⁺ H01L 23/02; H01L 23/34

(S2) U.S. Cl. 257/686, 257/776, 257/780, 257/723, 257/724; 257/782; 257/783 (58) Field of Search 257/738, 780, 782, 783, 778, 777, 774

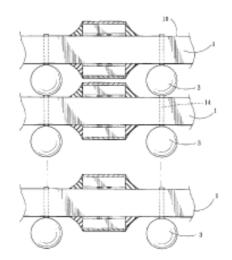
References Cited

U.S. PATENT DOCUMENTS

	5,731,633	٨	+	3,1996	Clayton	257)723	
	5,784,264	Α	+	7/1998	Tanioka	361,809	
	5,854,507	Α	*	12/1996	Mirenati et al	257/686	
	5,977,640	A	*	11/1999	Bertin et al.	251)717	

6,025,648	٨	+	2/2000	Takabashi et al	257)71
6,040,630	٨	+	3,2000	Panches et al	257578
6,051,878	A.	٠	42000	Aksem et al	25'068
6,089,793	A		5(2000)	Marayama et al	301.68
6,101,100	A		8/2000	Lords	361,76
6,137,164	A		10.2000	Yew et al	. 25/68
				Che	
6,185,127	ш	+	2/2001	Sepho et al	257)68
4,990,915	Dri		6/2004	Tiesense	909/99

* cited by examiner


Primary Examiner-Steve Lofe

Assistant Examiner—Nitin Paolds (74) Attorney, Agent, or Firm—Merchant & Gould, P.C.

ABSTRACT

A semiconductor chip module includes a chip-mounting member having opposite first and second surfaces, a set of ciscuit traces, and a plantility of planed through holes that extend through the first and second surfaces and that are connected to the circuit traces. A dielectric tape member bonds adhesively a semiconductor chip on the chip-mounting member. A first conductor unit connects electrically centact pads on a pad mounting surface of the seni-confactor chip and the circuit traces. A plurality of solder balls are disposed on one of the first and second surfaces of the chip-mounting member, are aligned with and are con-nected to the plated through holes in the chip-mounting member, respectively.

8 Claims, 9 Drawing Sheets

020 United States Patent

(54) SEMICONDUCTOR DEVICE WITH A MULTI-LEVEL INTERCONNECT STRUCTURE AND METHOD FOR MAKING

(76) Inventor: Yu-Nung Shon, 4F, No. 52, Sec. 2, Chang-Shan N. Rd., Taipei City (TW)

(*) Notice: Subject to any dischainer, the term of this putent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/716,948

(22) Filed: Nov. 19, 2003

Prior Publication Data US 2004/0135257 A1 Jul. 15, 2004

Foreign Application Priority Data

(51) Int. Cl. H01L 23/48

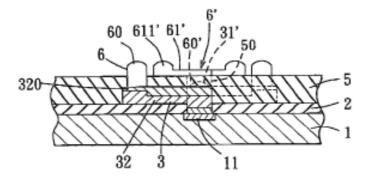
(2006.01) (52) U.S. CL 257/758 (10) Patent No.: US 7,176,573 B2

(45) Date of Patent: Feb. 13, 2007

(58) Field of Classification Search 257/734-738, 700; 438/118 See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS


* cited by examiner

Primary Econoce-Nation W. Ha

ABSTRACT

A semiconductor device includes a semiconductor die ond a multi-level interconnect structure that has a first insulating layer formed on the die, conductive horizontal bodies, each toyer formed on the day, conductive honology and of the die of which is connected to a respective bonding pad of the die and has an extension formed on the first insulating layer, a second insulating layer formed on the first insulating layer, as and conductive vertical bodies, each of which is connected to the extension of a respective conductive horizontal body and extends through the second insulating layer.

20 Claims, 4 Drawing Sheets

020 United States Patent

Shen

(54) METHOD FOR MAKING A CIRCUIT PLATE (76) Inventor: Yu-Nung Shen, 4F, No. 52, Sec. 2, Chung-Shan N. Rd., Taipei City (TW)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 312 days.

(21) Appl. No.: 11/166,058

(22) Filed: Jun. 24, 2005

Prior Publication Data US 2006/0000635 Al Jun. 5, 2006

(200)Foreign Application Priority Data

(51) Int. CL HOSK 3/02

(2006.01) (2006.01)

29/852; 29/835; 29/846; 29/847; 29/848

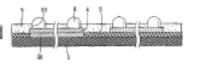
See application file for complete search history.

(45) Date of Patent:

References Cited U.S. PATENT DOCUMENTS

(10) Patent No.: US 7,383,630 B2

Jun. 10, 2008


4 cited by examiner

Primary Examiner—C. J Arbes (74) Attorney, Agent, or Firm—Ladas and Pony 1LP

ABSTRACT

A method for making a circuit plate includes: forming first holes in an insulating layer, forming a conductive layer on the insulating layer such that a portion of the conductive layer fills the first holes; grinding the conductive layer such that the pertion of the conductive layer remains in the first holes to form a pattern of conductive traces; forming a dielectric protective layer that covers the insulating layer and the conductive traces, forming a pattern of second holes in the protective layer such that a portion of each of the conductive traces is accessible through a respective one of the second holes; and forming conductive bumps that are respectively connected to the conductive traces.

14 Claims, 5 Deaving Sheets

(12) United States Patent Shen

(54) METHOD FOR MAKING A CIRCUIT PLATE

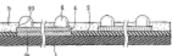
- (76) Inventor: Yu-Nung Shen, 4F, No. 52, Sec. 2, Chung-Shan N. Rd., Toipei City (TW)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 312 days.
- (21) Appl. No.: 11/166,058
- (22) Filed: Jun. 24, 2005
- (65) Prior Publication Data
- US 2006/0000635 A1 3as. 5, 2006
- (51) Int. Cl. 1001K 379
 - H01K 3/18 (2006.01) H05K 3/02 (2006.01)
- (S2) U.S. Cl. 29/882, 29/835, 29/846, 29/847, 23/948 (S8) Field of Classification Search 29/846, 847, 848, 852
- 29/846, 847, 848, 8 See application file for complete search history.

(10) Patent No.: US 7,383,630 B2 (45) Date of Patent: Jun. 10, 2008

(56) References Cited

U.S. PATENT DOCUMENTS

6,676,952	B2 *	1/2004	Janil
			Hsu et al
2901/0040290	AL*	H:2000	Sakusai et al


* cited by examiner

Primary Enminer—C. J Arbes (74) Attorney, Agent, or Firm—Ladas and Porty LLP

7) ABSTRACT

A method for making a circuit plate includes: forming first holes in an insulating layer, forming a conductive layer on the insulating layer such that a portion of the conductive layer fills the first holes; grinding the conductive layer such that the portion of the conductive layer remains in the first holes to form a purtous of conductive traces; forming a dielectric partective layer that covers the insulating layer and the conductive layer such that a portion of each of the conductive traces is accessible through a respective one of the second holes; and forming conductive bumps that are respectively connected to the conductive traces.

14 Claims, 5 Dearring Sheets

(12) United States Patent Chen

(10) Patent No.: US 6,437,448 B1 (45) Dute of Putent: Aug. 20, 2002

(54) SEMICONDUCTOR DEVICE ADAPTED FOR MOUNTING ON A SUBSTRATE

- (76) Inventor: I-Ming Chen, No. 60, Lanc 328, Li-Shan St., Nei-Hu Dist., Taipei City
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 09/765,793
- (22) Filed: Jun. 18, 2001

Related U.S. Application Data

- (63) Centinuation in part of application No. 49/725,431, filed on Nov. 29, 2000.
- (30) Foreign Application Priority Data

Oct	. 21, 2000 (TW)
(51)	Int. Cl.7
(52)	U.S. Cl257/777; 257/737
(58)	Field of Search 257/737, 736, 257/777, 778, 779, 780, 781, 782, 784,

(5t) References Cited

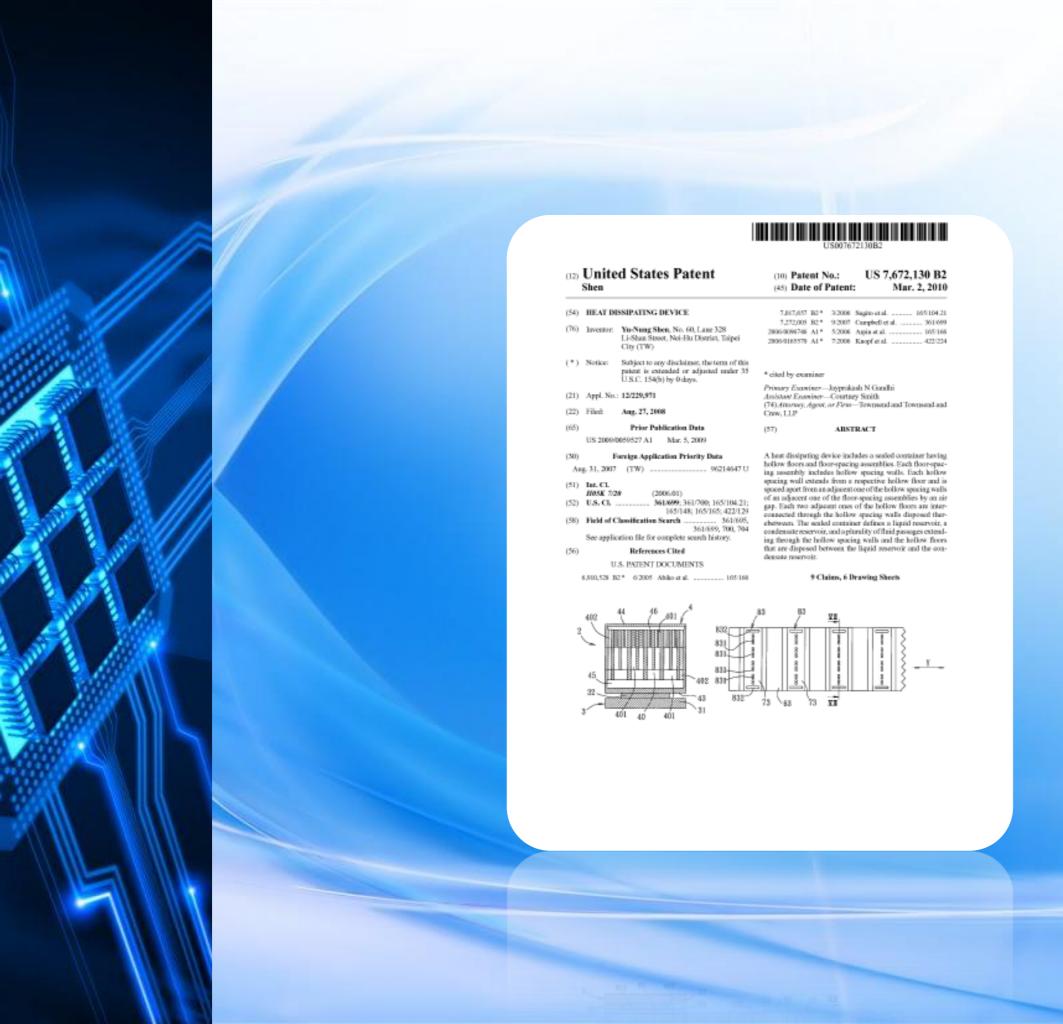
U.S. PATENT DOCUMENTS

5,222,014 A * 6	1993 Lin	381/414
-----------------	----------	---------

5,990,546	Α	*	11/1999	Igasashi et al	25'07'00
				Moriyama	
				Hobo et al	
				Chen	

^{*} cited by exerciser

Primary Examiner—Vict Q. Ngayen Assistant Examiner—Osvid Neu CAD Attorney, Agent, or Firm—Christianus O'Conney,


(57) ABSTRACT

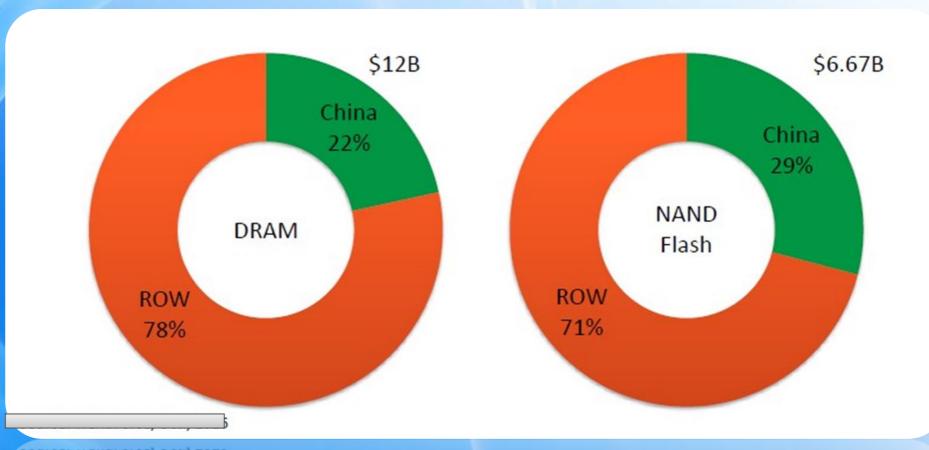
Johnson Kindness PLLC

A method for manufacturing a semiconductor device includes the steps of providing a sunticonductor chip baving a pad-mounting surface with a bonding pad, forming a library on the bonding pad, forming a photoresist layer on the pad-mounting surface, forming a second bump which protrudes from the first bump through an upper surface of the photoresist layer, and forming a conductive body on the second bump. The conductive body has an anchor portion connecting electrically with and encapsulating an apper portion of the second bump, and a contact portion offset from the anchor portion and adapted to be connected to a substrate.

11. Claims, 4 Drawing Sheets

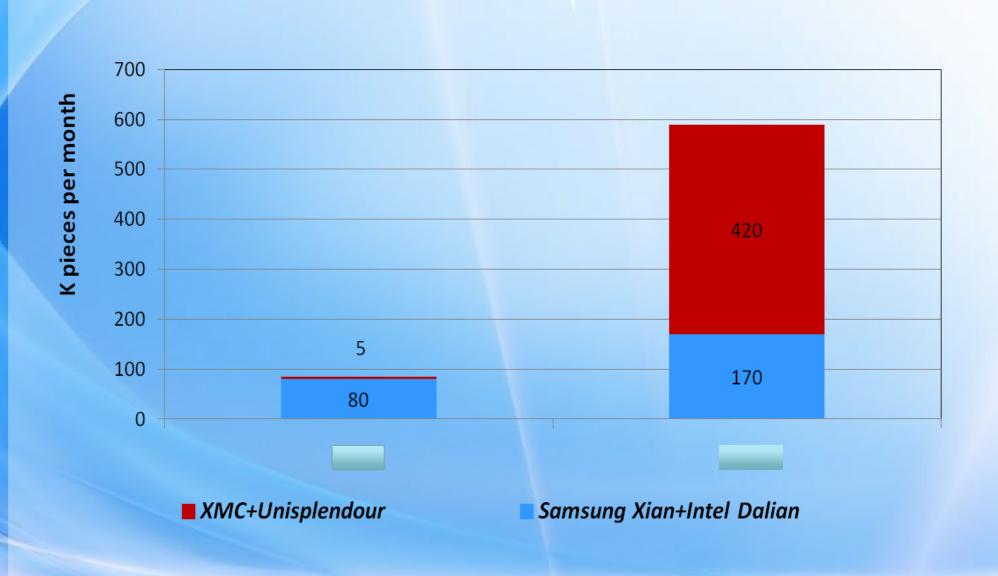
全球半导体和内存市场

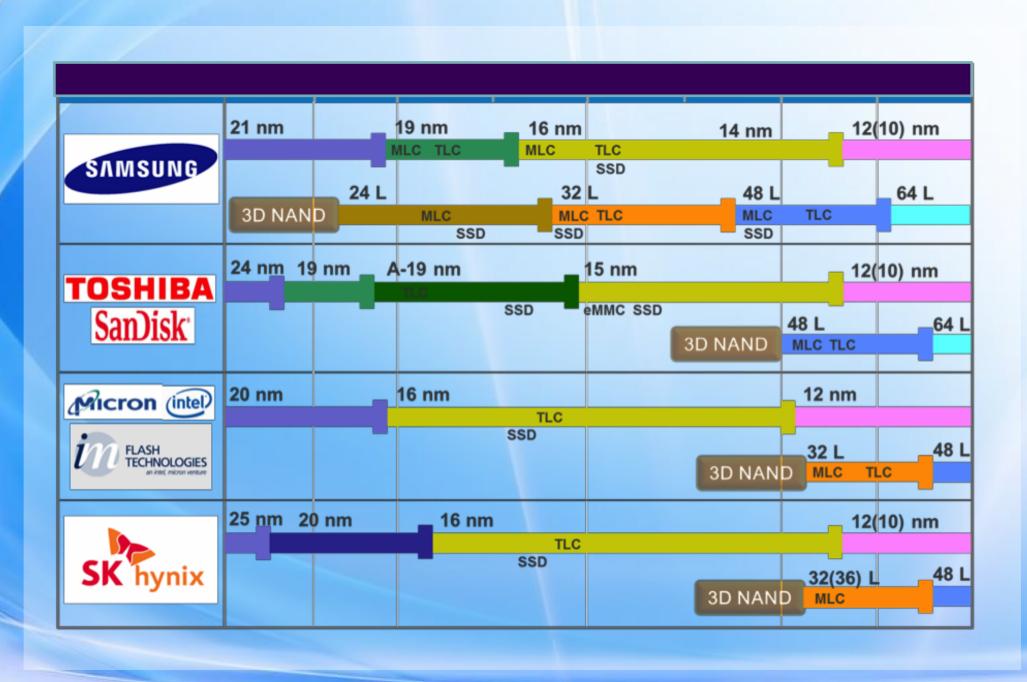
内存占全球半导体四分之一的产量


数据存取需求爆炸性的成长

1 ZB = 10²¹ bytes = 1000,000,000,000 GB

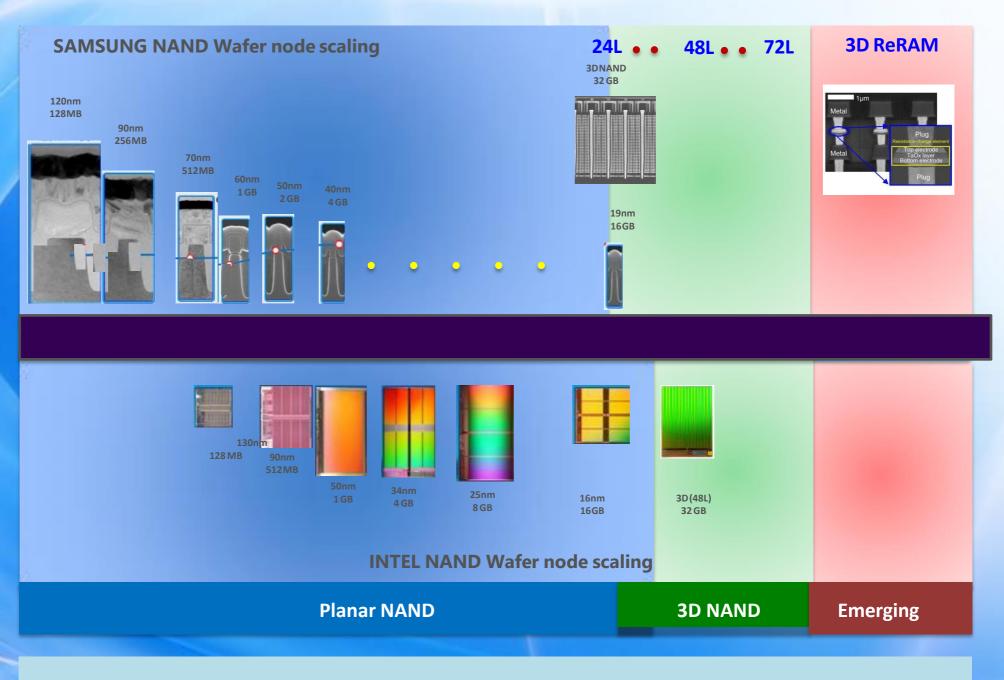
大数据显示"移动/计算应用中的广泛部署而正在创建。数据是未来十年的新"石油"。


中国的内存需求

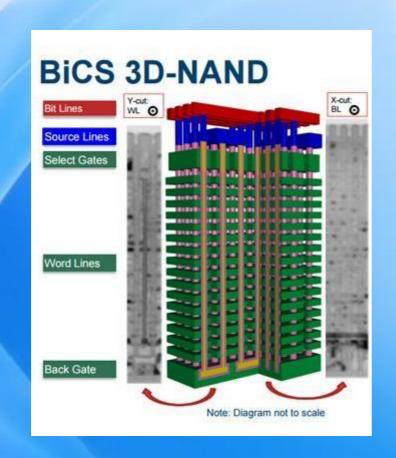

Source: TrendForce, Oct., 2015

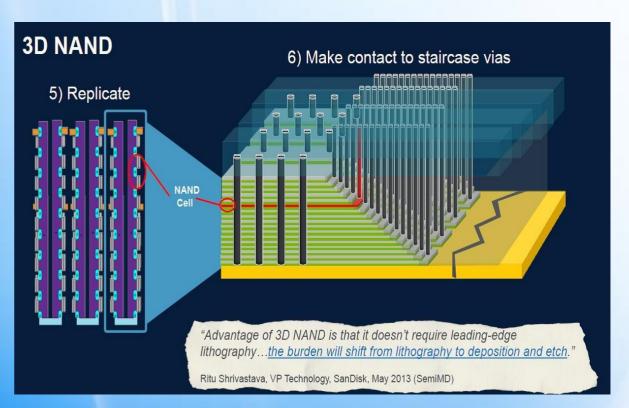
隨著PC智能手機的興起,中國國內DRAM和NAND閃存消費量急劇增加。中國占世界記憶產量的30%左右,其中大部分都是由國外進口製造。

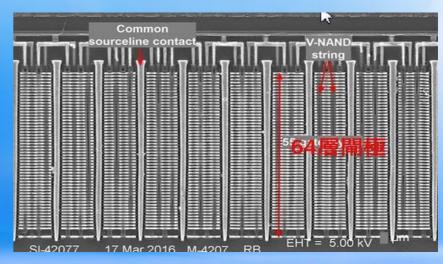
NAND Flash需求


各厂3D封装技术进程

全球半导体中心的战略图



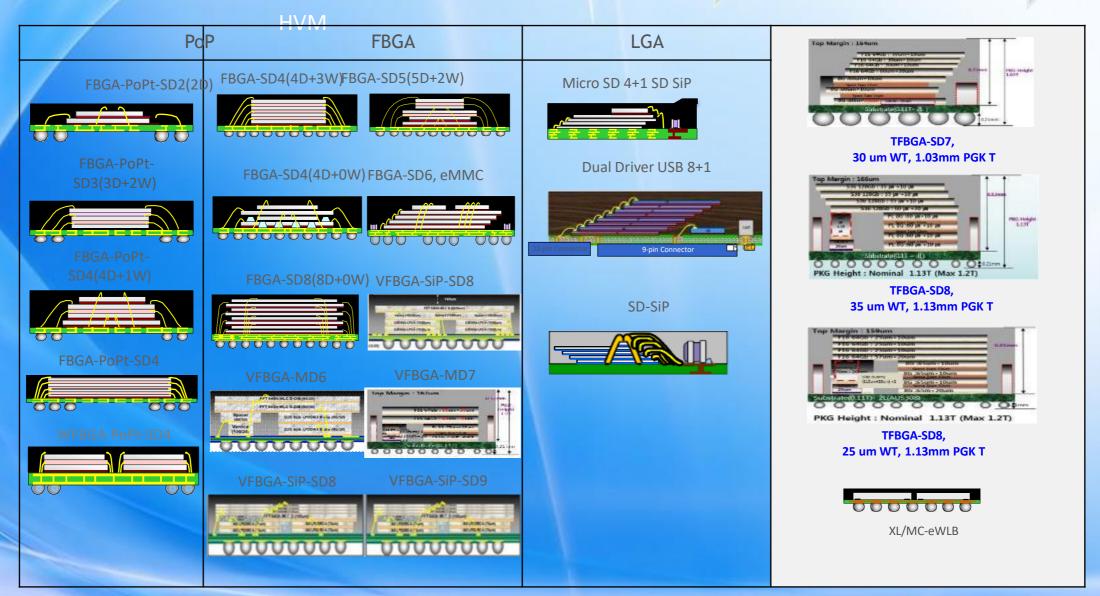

3D NAND发展进程



3D NAND技术提供的扩展经济效益显著降低了

3D封装技术概念图

3D封装技术应用范围


各种堆栈方式应用范围

记忆替封装趋势

目前技术

趋势

L=1.4mm, T=1.2mm, V=1.0mm, W=0.8mm, U=0.65mm, X=0.50mm

LFBGA-SD8 (NAND)

Package Features

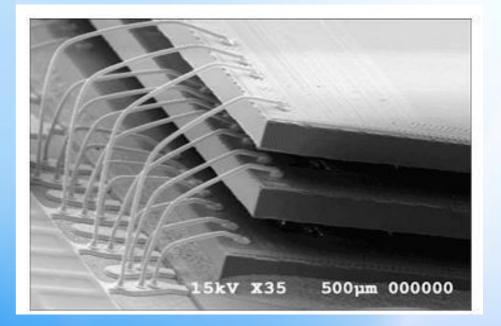
LFBGA 14x18mm 152LD

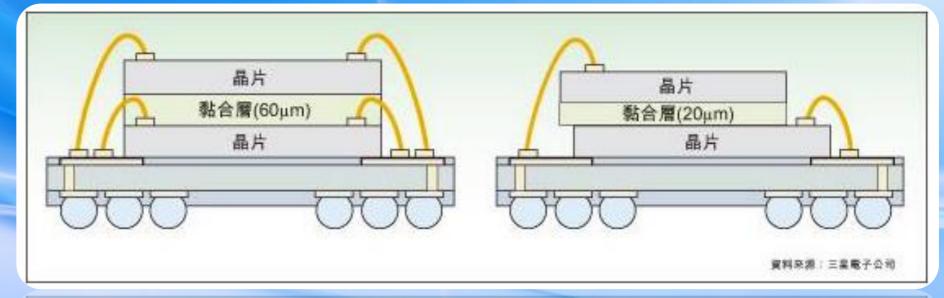
• NAND Die Size: 9.7x17.1mm

Device: 20nm Non-LowK NAND

Wafer thickness: 60um

Mold cap: 0.84mm


2-lyr / 0.13mmT laminate substrate


Key Technologies

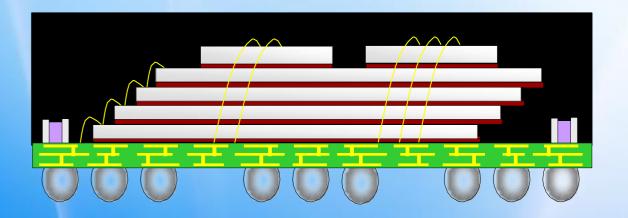
- 20nm NAND die
- 0.5mm overhang W/B with 60um die thickness
- 2-passes DA for the 8 dies stack

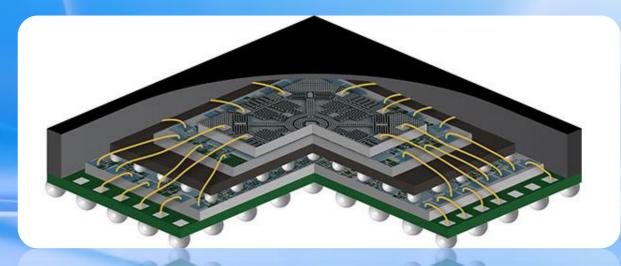
Current Status

HVM since 2024

内存堆栈芯片封装- MIXED (FBGA-SD6) NAND + DDR + CONTROLLER

Package Features


- VFBGA-SD6 11.5x13mm 153LD
- Nand flash Die Size: 10.33x8.12mm
- DDR Die Size: 6.32x2.69mm
- Controller Die Size: 6.79X1.82mm
- 0.13mm, 3-lyr coreless substrate


Key Technologies

- 0.13T odd layer substrate handing
- SSB loop for die to die and die to substrate
- Warpage control w/ 3L substrate

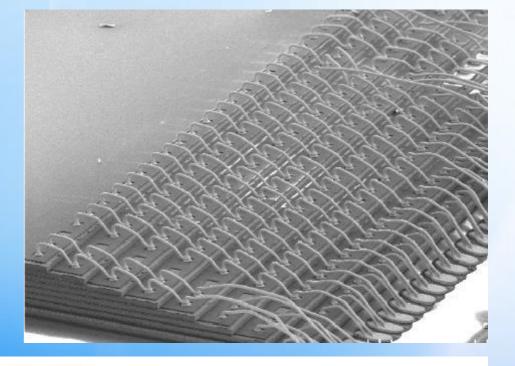
Current Status

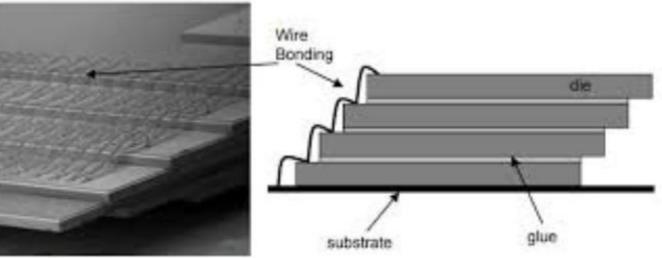
HVM since 2024

FLGA-SD9 (USB)

Package Features

- FLGA 11.1x16mm
- Memory Die Size : 8.2x11.1mm
- Controller Die Size: 2.9x2.4mm
- Device: 19nm Non-LowK + 65nm Lowk
 Controller
- Wafer thickness: 68um x 8 dies + 150um
 Controller
- 2-lyr / 0.21mmT laminate substrate


Key Technologies

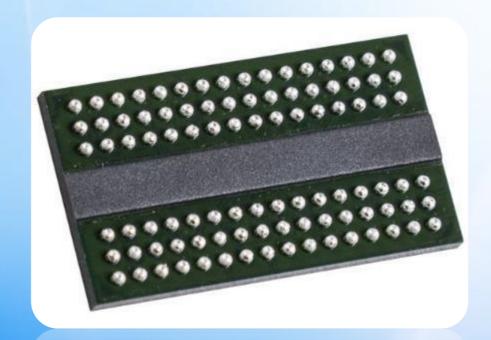

- 19nm NAND die
- 8-Die Stack with Die-to-die bonding
- One-pass for the 8 NAND dies stack

Current Status

HVM

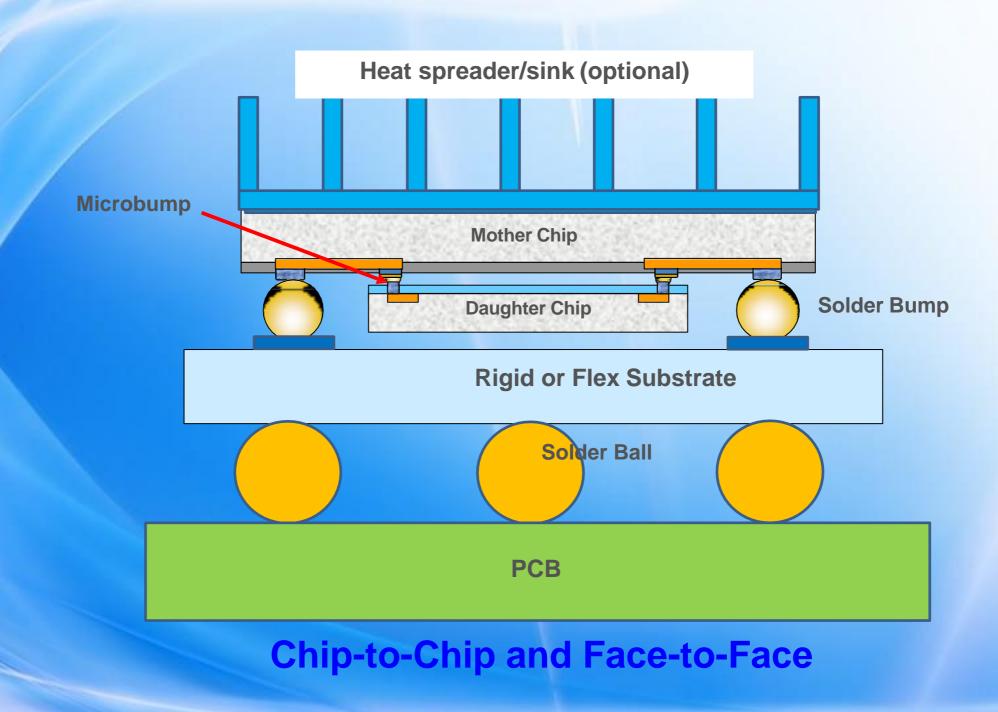
Memory Stacked-Die

Package Features

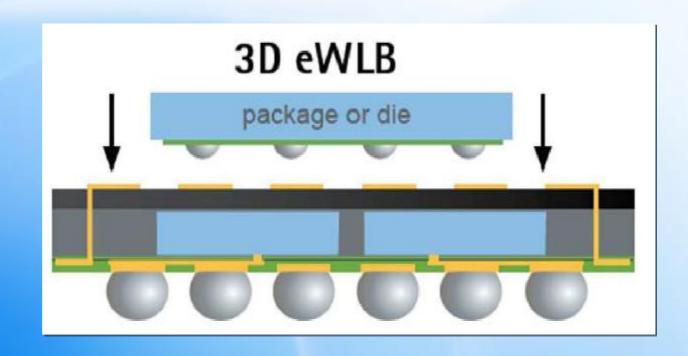

- FBGA 11.5x13mm 221LD e-MCP
- 4.115x1.385(Controller): 60um
- 9.647x8.070(DRAM): 75um
- 1.208x7.171(Nand): 60um
- 9.00x8.00 (Film spacer) : 53um
- 2-lyr / 0.41mmT laminate substrate

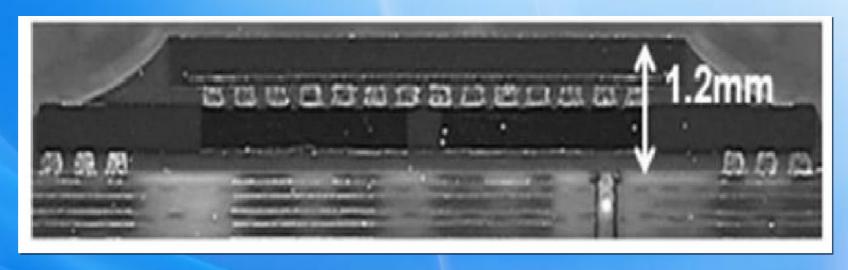
Key Technologies

- 60um NAND flash die
- Film spacer application
- **Dolmen and NAND cascade structure**


Current Status

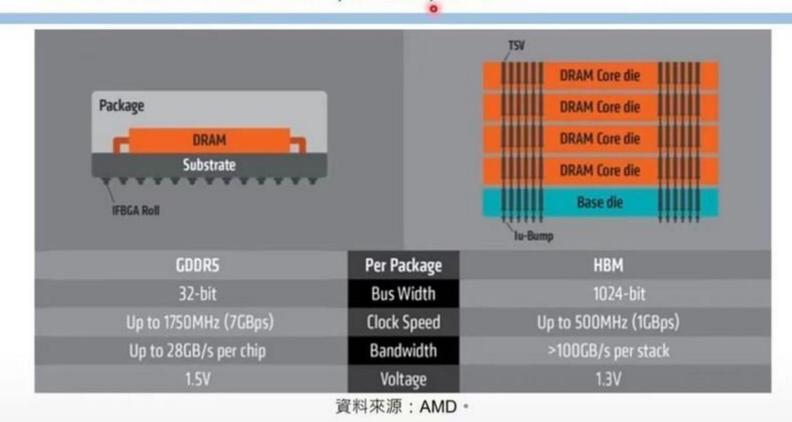
HVM from '2024

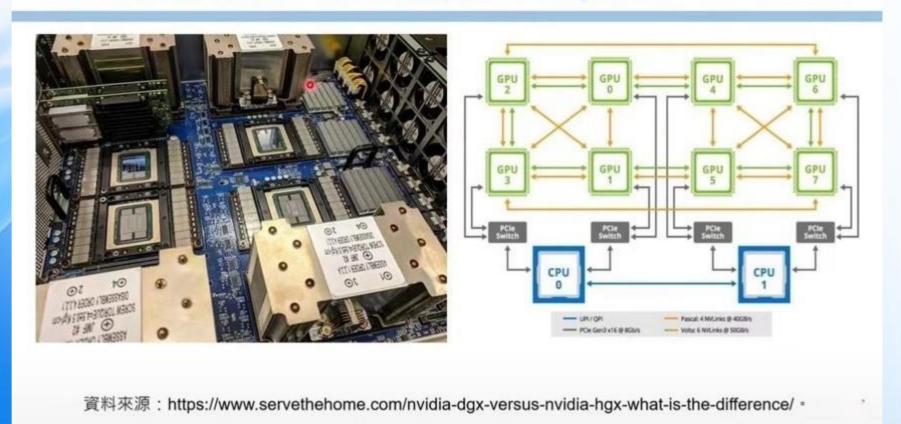




堆栈硅模块连接在基板上

半导体3D堆栈方式




□ 高頻寬記憶體(HBM)相關供應鏈


□ 動能隨機存取記憶體(DRAM)的差異

■ NVIDIA Tesla P100 8x SXM2 GPU system

□ 圖形處理器(GPU)與高頻寬記憶體(HBM)

